Prediksi Kualitas Udara di Daerah Istimewa Yogyakarta Menggunakan Algoritma J48 dan K-NN

Authors

  • Tri Fera Nofitasari Sistem Informasi, Universitas Amikom Purwokerto
  • Jimly Assidqi Hardiansyah Sistem Informasi, Universitas Amikom Purwokerto
  • Mu’afa Najmi Zain Sistem Informasi, Universitas Amikom Purwokerto
  • Diya Ulhaq Jauhri Budiarto Sistem Informasi, Universitas Amikom Purwokerto
  • Dhanar Intan Surya Saputra Sistem Informasi, Universitas Amikom Purwokerto

DOI:

https://doi.org/10.53990/jupiter.v6i2.502

Keywords:

Air classification, Data Mining, J48, K-NN, Yogyakarta

Abstract

Pencemaran udara telah menjadi isu lingkungan yang signifikan di Indonesia, khususnya di wilayah Yogyakarta. Penelitian ini bertujuan untuk membandingkan performa dua algoritma klasifikasi, yaitu J48 dan K-Nearest Neighbor (K-NN), dalam mengklasifikasikan data kualitas udara ke dalam kategori “Good” dan “Moderate”. Dataset yang digunakan berjumlah 5822 data yang diperoleh dari Kaggle. Tahapan pre-processing meliputi penghapusan data kosong, normalisasi, dan evaluasi menggunakan teknik 10-fold cross-validation. Hasil penelitian menunjkukan bahwa algoritma J48 memiliki akurasi sebesar 99,95% dengan nilai Kappa Statistic sebesar 0,9988, sedangkan K-NN memperoleh akurasi 98,57%. Implikasi dari penelitian ini menunjukkan bahwa J48 lebih andal digunakan dalam klasifikasi kualitas udara, terutama untuk sistem prediksi secara real-time. Penerapan sistem klasifikasi ini sangat penting dalam mendukung upaya pemantauan kualitas udara yang lebih cepat dan akurat, sehingga dapat membantu pengambilan keputusan yang responsif dalam menangani isu pencemaran lingkungan.

Downloads

Download data is not yet available.

References

Astriyani, M., Laela, I. N., Lestari, D. P., Anggraeni, L., & Astuti, T. (2023). Analisis Klasifikasi Data Kualitas Udara Dki Jakarta Menggunakan Algoritma C.45. JuSiTik : Jurnal Sistem Dan Teknologi Informasi Komunikasi, 6(1), 36–41. https://doi.org/10.32524/jusitik.v6i1.790

Banciu, C., Florea, A., & Bogdan, R. (2024). Monitoring and Predicting Air Quality with IoT Devices. Processes, 12(9). https://doi.org/10.3390/pr12091961

Evitania, C.G. (2023). Implementation of the K-Nearest Neighbor Algorithm to Predict Air Pollution. Information Technology and Systems, 1(1), 45–54. https://doi.org/10.58777/its.v1i1.123

Gunawan, M. N., Farhanah, T., Masruroh, S. U., Jundulloh, A. M., Raushanfikar, N. Z., & Amriza, R. N. S. (2024). Accuracy of K-Nearest Neighbors Algorithm Classification For Archiving Research Publications. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 23(3), 593–602. https://doi.org/10.30812/matrik.v23i3.3915

Halder, R. K., Uddin, M. N., Uddin, M. A., Aryal, S., & Khraisat, A. (2024). Enhancing K-nearest neighbor algorithm: a comprehensive review and performance analysis of modifications. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-024-00973-y

Hilly, J. J., Singh, K. R., Jagals, P., Mani, F. S., Turagabeci, A., Ashworth, M., Mataki, M., Morawska, L., Knibbs, L. D., Stuetz, R. M., & Dansie, A. P. (2024). Review of scientific research on air quality and environmental health risk and impact for PICTS. In Science of the Total Environment (Vol. 942). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2024.173628

Kang, K., & Michalak, J. (2018). Enhanced version of AdaBoostM1 with J48 Tree learning method.

Kaunang, F. J. (2018). Penerapan Algoritma J48 Decision Tree Untuk Analisis Tingkat Kemiskinan di Indonesia Application of J48 Decision Tree Algorithm For Analyzing Poverty Level in Indonesia. Cogito Smart Journal, 4(2). www.bps.go.id

Lumumba, V., Kiprotich, D., Mpaine, M., Makena, N., & Kavita, M. (2024). Comparative Analysis of Cross-Validation Techniques: LOOCV, K-folds Cross-Validation, and Repeated K-folds Cross-Validation in Machine Learning Models. American Journal of Theoretical and Applied Statistics, 13(5), 127–137. https://doi.org/10.11648/j.ajtas.20241305.13

Maharajpet, S. S., Likhitha, S., & Kiran, T. (2024). Air Quality Prediction Using Machine Learning. Convergence of Machine Learning and IoT for Enabling the Future of Intelligent Systems, 97–103. https://doi.org/10.48001/978-81-966500-7-0-9

Neo, E. X., Hasikin, K., Lai, K. W., Mokhtar, M. I., Azizan, M. M., Hizaddin, H. F., Razak, S. A., & Yanto. (2023). Artificial intelligence-assisted air quality monitoring for smart city management. PeerJ Computer Science, 9. https://doi.org/10.7717/peerj-cs.1306

Pazhanivel. K., Kumar, U.D., Naveen, K., & Niranjan, M. (2023). Air Quality Prediction System using Machine Learning. International Journal of Advanced Research in Science, Communication and Technology, 10–21. https://doi.org/10.48175/ijarsct-9254

Qiu, J. (2024). An Analysis of Model Evaluation with Cross-Validation: Techniques, Applications, and Recent Advances. Advances in Economics, Management and Political Sciences, 99(1), 69–72. https://doi.org/10.54254/2754-1169/99/2024ox0213

Srivastava, A. K., Singh, D., Pandey, A. S., & Maini, T. (2019). A novel feature selection and short-term price forecasting based on a decision tree (J48) model. Energies, 12(19). https://doi.org/10.3390/en12193665

Suliman, S. (2021). Implementasi Data Mining Terhadap Prestasi Belajar Mahasiswa Berdasarkan Pergaulan dan Sosial Ekonomi Dengan Algoritma K-Means Clustering. Simkom, 6(1), 1–11. https://doi.org/10.51717/simkom.v6i1.48

Downloads

Published

2025-08-01

How to Cite

Nofitasari, T. F., Hardiansyah, J. A., Zain, M. N. ., Budiarto, D. U. J. ., & Saputra, D. I. S. . (2025). Prediksi Kualitas Udara di Daerah Istimewa Yogyakarta Menggunakan Algoritma J48 dan K-NN. JUPITER : Journal of Computer & Information Technology, 6(2), 209–220. https://doi.org/10.53990/jupiter.v6i2.502